Jika (1 1 2 1)P(0 1)=(1 2) dan (1 1 2 1)P(1 1)=(2 1), maka det⁡(P)=⋯

www.jagostat.com

www.jagostat.com

Website Belajar Matematika & Statistika

Website Belajar Matematika & Statistika

Bahas Soal Matematika   »   Matriks   ›  

Jika \( \begin{pmatrix} 1 & 1 \\ 2 & 1 \end{pmatrix} P \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \end{pmatrix} \) dan \( \begin{pmatrix} 1 & 1 \\ 2 & 1 \end{pmatrix} P \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \end{pmatrix} \), maka \( \det P = \cdots \)

  1. -3
  2. -2
  3. 1
  4. 2
  5. 3

(SBMPTN 2016 MATDAS)

Pembahasan:

Ingat bahwa jika \( AX = B \) maka \( X = A^{-1} B \) sehingga kita peroleh:

\begin{aligned} \begin{pmatrix} 1 & 1 \\ 2 & 1 \end{pmatrix} P \begin{pmatrix} 0 \\ 1 \end{pmatrix} &= \begin{pmatrix} 1 \\ 2 \end{pmatrix} \\[8pt] P \begin{pmatrix} 0 \\ 1 \end{pmatrix} &= \begin{pmatrix} 1 & 1 \\ 2 & 1 \end{pmatrix}^{-1} \begin{pmatrix} 1 \\ 2 \end{pmatrix} \\[8pt] P \begin{pmatrix} 0 \\ 1 \end{pmatrix} &= \frac{1}{1-2} \begin{pmatrix} 1 & -1 \\ -2 & 1 \end{pmatrix}\begin{pmatrix} 1 \\ 2 \end{pmatrix} \\[8pt] P \begin{pmatrix} 0 \\ 1 \end{pmatrix} &= \frac{1}{-1} \cdot \begin{pmatrix} -1 \\ 0 \end{pmatrix} \\[8pt] P \begin{pmatrix} 0 \\ 1 \end{pmatrix} &= \begin{pmatrix} 1 \\ 0 \end{pmatrix} \end{aligned}

Misalkan \( P = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \), maka

\begin{aligned} \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} &= \begin{pmatrix} 1 \\ 0 \end{pmatrix} \\[8pt] \begin{pmatrix} b \\ d \end{pmatrix} &= \begin{pmatrix} 1 \\ 0 \end{pmatrix} \\[8pt] b = 1 \ &\text{dan} \ d = 0 \end{aligned}
\begin{aligned} \begin{pmatrix} 1 & 1 \\ 2 & 1 \end{pmatrix} P \begin{pmatrix} 1 \\ 1 \end{pmatrix} &= \begin{pmatrix} 2 \\ 1 \end{pmatrix} \\[8pt] P \begin{pmatrix} 1 \\ 1 \end{pmatrix} &= \begin{pmatrix} 1 & 1 \\ 2 & 1 \end{pmatrix}^{-1} \begin{pmatrix} 2 \\ 1 \end{pmatrix} \\[8pt] P \begin{pmatrix} 1 \\ 1 \end{pmatrix} &= \frac{1}{1-2} \begin{pmatrix} 1 & -1 \\ -2 & 1 \end{pmatrix} \begin{pmatrix} 2 \\ 1 \end{pmatrix} \\[8pt] P \begin{pmatrix} 1 \\ 1 \end{pmatrix} &= \frac{1}{-1} \cdot \begin{pmatrix} 1 \\ -3 \end{pmatrix} \\[8pt] P \begin{pmatrix} 1 \\ 1 \end{pmatrix} &= \begin{pmatrix} -1 \\ 3 \end{pmatrix} \end{aligned}
\begin{aligned} \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} &= \begin{pmatrix} -1 \\ 3 \end{pmatrix} \\[8pt] \begin{pmatrix} a+b \\ c+d \end{pmatrix} &= \begin{pmatrix} -1 \\ 3 \end{pmatrix} \\[8pt] a + b = -1 \Leftrightarrow a + 1 &= -1 \\[8pt] a &= -2 \\[8pt] c+d = 3 \Leftrightarrow c+0 &= 3 \\[8pt] c &= 3 \end{aligned}

Dengan demikian, determinan matriks P, yaitu:

\begin{aligned} P &= \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} -2 & 1 \\ 3 & 0 \end{pmatrix} \\[8pt] |P| &= \begin{vmatrix} -2 & 1 \\ 3 & 0 \end{vmatrix} = -2 \cdot 0 - 1 \cdot 3 \\[8pt] &= -3 \end{aligned}

Jawaban A.